Проекции в картографии. Практическая картография Построение проекции меркатора




Проекции в картографии

С давних пор путешественники и мореплаватели занимались составлением карт, изображая в виде рисунков и схем изученные территории. Исторические исследования показывают, что картография появилась в первобытном обществе еще до появления письменности. В современную эпоху благодаря развитию средств передачи и обработки данных, таких как компьютеры, интернет, спутниковая и мобильная связь, важнейшей составляющей информационных ресурсов остается геоинформация, т.е. данные о положении и координатах различных объектов в окружающем нас географическом пространстве.

Современные карты составляются в электронном виде с использованием аппаратов дистанционного зондирования Земли, спутниковой глобальной системы позиционирования (GPS либо ГЛОНАСС) и т. д. Однако сущность картографии остается прежней - это изображение объектов на карте, позволяющее однозначно идентифицировать их, определив положение при помощи привязки к той или иной системе географических координат. Неудивительно поэтому, что одной из основных и самых распространенных сегодня картографических проекций является равноугольная цилиндрическая проекция Меркатора, впервые примененная для создания карт четыре с половиной века назад

Работа древних землемеров не выходила за пределы геодезических измерений и расчетов для расстановки вех вдоль маршрута будущей дороги или обозначения границ земельных участков. Но посте­пенно накапливалось множество данных – расстояния между городами, препятствия на пути, расположение водных объектов, лесных массивов, особенности ландшафта, границы государств и материков. Карты захватывали все большие территории, становились более детальными, но при этом возрастала и их погрешность.

Поскольку Земля представляет собой геоид (фигуру, близкую к эллипсоиду), для изображения поверхности геоида Земли на карте необходимо развернуть, спроецировать эту поверхность на плоскость тем или иным способом. Методы отображения геоида на плоской карте называются картографическими проекциями. Существует несколько видов проекций, и каждая из них вносит в плоское изображение свои искажения длин, углов, площадей или формы фигур.

Как сделать точную карту?

Полностью избежать искажений при построении карты невозможно. Однако можно избавиться от какого-либо одного типа искажений. Так называемые равновеликие проекции сохраняют площади, но при этом искажают углы и формы. Равновеликими проекциями удобно пользоваться в экономических, почвенных и других мелкомасштабных тематических картах – для того, чтобы с их помощью рассчитывать, например, площади территорий, подвергшихся загрязнению, или управлять лесными хозяйствами. Примером такой проекции служит равновеликая коническая проекция Альберса , разработанная в 1805 г. немецким картографом Хейнрихом Альберсом.

Равноугольные проекции - это проекции без искажений углов. Такие проекции удобны для решения навигационных задач. Угол на местности всегда равен углу на такой карте, а прямая линия на местности изображается прямой линией на карте. Это позволяет мореплавателям и путешественникам прокладывать маршрут и точно следовать ему с помощью показаний компаса. Однако линейный масштаб карты при такой проекции зависит от положения точки на ней.

Самой древней равноугольной проекцией считается стереографическая проекция, которая была придумана Аполлонием Пергским около 200 г. до нашей эры. Эта проекция и по сей день используется для карт звезд­ного неба, в фотографии – для отображения сфериче­ских панорам, в кристаллографии – для изображения точечных групп симметрии кристаллов. Но использование этой проекции в мореплавании было бы затруднительным в силу слишком больших линейных искажений.

Проекция Меркатора

В 1569 г. фламандский географ Герхард Меркатор (латинизированное имя Герарда Кремера) разработал и впервые применил в своем атласе (полное название «Атлас, или Космографические рассуждения о сотворении мира и вид сотворенного») равноугольную цилиндрическую проекцию , названную впоследствии его именем и ставшую одной из основных и самых распространенных картографических проекций.

Для построения цилиндрической проекции Меркатора земной геоид помещают внутри цилиндра так, чтобы геоид касался цилиндра по экватору. Проекцию получают, проводя лучи из центра геоида до пересечения с поверхностью цилиндра. Если после этого цилиндр разрезать вдоль оси и развернуть, то получится плоская карта поверхности Земли. Образно это можно представить следующим образом: глобус оборачивается листом бумаги по экватору, в центр глобуса помещается лампа и на листе бумаги отображаются спроецированные лампой изображения материков, островов, рек и т. п. Если бы на бумагу был нанесен способный засвечиваться слой, то, развернув лист, мы получили бы готовую карту.

Полюса в такой проекции расположены на бесконечном расстоянии от экватора, и, следовательно, не могут быть изображены на карте. На практике карта имеет верхний и нижний пределы широт – примерно до 80° СШ и ЮШ.

Параллели и меридианы картографической сетки изображаются на карте параллельными прямыми линиями, при этом они всегда перпендикулярны. Расстояния между меридианами одинаковы, а вот расстояние между параллелями равно расстоянию между меридианами вблизи экватора, но быстро увеличивается при приближении к полюсам.

Масштаб в этой проекции не является постоянным, он увеличивается от экватора к полюсам как обратный косинус широты, но масштабы по вертикали и по горизонтали всегда равны.

Равенство вертикального и горизонтального масштабов обеспечивает равноугольность проекции – угол между двумя линиями на местности равен углу между изображением этих линий на карте. Благодаря этому хорошо отображается форма небольших объектов. Но искажения площади увеличиваются по направлению к полярным регионам. Например, несмотря на то, что Гренландия составляет всего одну восьмую размера Южной Америки, в проекции Меркатора она представляется больше. Большие искажения площадей делают проекцию Меркатора непригодной для общегеографических карт мира.

Линия, проведенная между двумя точками на карте в этой проекции, пересекает меридианы под одним и тем же углом. Эта линия называется румбом или локсо­дромией . Надо отметить, что эта линия не описывает кратчайшее расстояние между точками, но в проекции Меркатора всегда изображается прямой линией. Этот факт делает проекцию идеальной для нужд навигации. Если мореплаватель желает отправиться, например, из Испании в Вест-Индию, все, что ему нужно сделать, это провести линию между двумя точками, и штурман будет знать, какого направления по компасу постоянно придерживаться, чтобы приплыть к месту назначения.

С точностью до сантиметра

Для применения проекции Меркатора (как, впрочем, и любой другой) необходимо определить систему координат на земной поверхности и корректно выбрать так называемый референц-эллипсоид – эллипсоид вращения, приближенно описывающий форму поверхности Земли (геоида). Для местных карт в России в качестве такого референц-эллипсоида с 1946 г. используется эллипсоид Красовского. В большинстве европейских стран вместо него используется эллипсоид Бесселя. Самым популярным в наши дни эллипсоидом, предназначенным для составления общемировых карт, является мировая геодезическая система 1984 г. WGS-84. Она определяет трехмерную систему координат для позиционирования на земной поверхности относительно центра масс Земли, погрешность составляет менее 2 см. Классическая равноугольная цилиндрическая проекция Меркатора применяется к соответствующему эллипсоиду. Так, например, сервис Яндекс.Карты использует эллиптическую WGS-84 проекцию Меркатора.

В последнее время в связи со стремительным развитием картографических веб-сервисов большое распространение получил другой вариант проекции Меркатора – на базе сферы, а не эллипсоида. Этот выбор обусловлен более простыми расчетами, которые могут быть быстро выполнены клиентами этих сервисов прямо в браузере. Часто эту проекцию называют «сфериче­ским Меркатором» . Такой вариант проекции Меркатора используется сервисами Google Maps , а также 2ГИС .

Еще одним известным вариантом проекции Меркатора является равно­угольная проекция Гаусса-Крюгера . Она была введена выдающимся немецким ученым Карлом Фридрихом Гауссом в 1820-1830 гг. для картографирования Германии – так называемой ганноверской триангуляции . В 1912 и 1919 гг. ее развил немецкий геодезист Л. Крюгер.

По сути, она является поперечной цилиндрической проекцией. Поверхность земного эллипсоида делится на трех- или шестиградусные зоны, ограниченные меридианами от полюса до полюса. Цилиндр касается среднего меридиана зоны, и она проецируется на этот цилиндр. Всего можно выделить 60 шестиградусных или 120 трехградусных зон.

В России для топографических карт масштаба 1: 1000000 применяют шестиградусные зоны. Для топографических планов масштаба 1: 5000 и 1:2000 применяются трехградусные зоны, осевые меридианы которых совпадают с осевыми и граничными меридианами шестиградусных зон. При съемках городов и территорий под строительство крупных инженерных сооружений могут быть использованы частные зоны с осевым меридианом посередине объекта.

Многомерная карта

Современные информационные технологии позволяют не просто нанести контуры объекта на карту, но и менять его вид в зависимости от масштаба, связать с его географическим положением множество других атрибутов, таких как адрес, информация о расположенных в данном здании организациях, количество этажей и т. п., делая электронную карту многомерной, разномасштабной, интегрируя в ней одновременно несколько справочных баз данных. Для обработки этого массива информации и представления его в удобном для пользователя виде необходимы достаточно сложные программные продукты, так называемые геоинформационные системы , разработку и поддержку которых могут осуществить лишь достаточно крупные, обладающие необходимым опытом IT-компании. Но, несмотря на то, что современные электронные карты мало похожи на своих бумажных предшественников, все равно в их основе лежат картография и тот или иной способ отображения земной поверхности на плоскость.

Для иллюстрации методов современной картографии можно рассмотреть опыт работы компании «Дата Ист» (Новосибирск), занимающейся разработкой программного обеспечения в области геоинформационных технологий.

Проекция, которая выбирается для построения электронной карты, зависит от назначения карты. Для карт общего пользования и для навигационных карт, как правило, применяется проекция Меркатора с системой координат WGS-84. Например, эта система координат использовалась в проекте «Мобильный Новосибирск» , созданном по заказу мэрии города Новосибирска для городского муниципального портала .

Для крупномасштабных карт с целью минимизации линейных искажений используются как зональные равноугольные проекции (Гаусса-Крюгера), так и неравноугольные проекции (например, коническая равно­промежуточная проекция – Equidistant conic ).

Сегодня карты создаются с широким привлечением аэрофотосъемки и спутниковых фотографий. Для качественной работы над картами в компании «Дата Ист» создан архив космических снимков, охватывающих территории Новосибирской, Кемеровской, Томской, Омской областей, Алтайского края, Республик Алтай и Хакасия, других регионов России. С помощью этого архива, кроме крупномасштабных карт территории, можно изготавливать схемы отдельных объектов и участ­ков под заказ. При этом в зависимости от территории и необходимого масштаба применяется та или иная проекция.

Со времен Меркатора картография изменилась радикально. Информационная революция затронула эту область человеческой деятельности, наверное, больше всех. Вместо томов бумажных карт теперь каждому путешественнику, туристу, водителю доступны компактные электронные навигаторы, содержащие в себе массу полезной информации о географических объектах.

Но суть карт осталась той же – показать нам в удобном и ясном виде, с указанием точных географических координат, расположение объектов окружающего нас мира.

Литература

ГОСТ Р 50828-95. Геоинформационное картографирование. Пространственные данные, цифровые и электронные карты. Общие требования. М., 1995.

Капралов Е. Г. и др. Основы геоинформатики: в 2 кн. / Учеб. пособие для студ. вузов / Под ред. Тикунова В. С. М.: Академия, 2004. 352, 480 c.

Жалковский Е. А. и др. Цифровая картография и геоинформатика / Краткий терминологический словарь. М.: Картгеоцентр-Геодезиздат, 1999. 46 с.

Баранов Ю. Б. и др. Геоинформатика. Толковый словарь основных терминов. М.: ГИС-Ассоциация, 1999.

ДеМерс Н. Н. Географические информационные системы. Основы.: Пер. с англ. М.: Дата+, 1999.

Карты любезно предоставлены ООО «Дата Ист» (г. Новосибирск)

При движении судна постоянным истинным курсом линия курса пересекает каждый меридиан под одним и тем же углом и на земной поверхности эта линия получается двоякой кривизны, называемая локсодромией (что в переводе с греческого означает «косой бег»).

Плавание по локсодромии удобно, так как курс судна остается постоянным, а это упрощает все расчеты, связанные с прокладкой. Основные свойства локсодромии, проходящей через две точки, можно выявить из ее уравнения:


Из этого уравнения следует, что при К = 0° или К = 180° tg К = 0, тогда и λ2 - λ1 = 0, следовательно, на истинных курсах 0 или 180° долгота точек не изменяется и локсодромия совпадает с меридианом, превращаясь в дугу большого круга, и в данном случае проходит через земные полюса.

Если уравнение написать в виде


и принять К - 90° или К = 270°, то при этих значениях tg К = ~. Так как разность долгот λ2 - λ1 находящаяся в числителе, не может быть равна бесконечности, то должен быть равен нулю знаменатель, а он может быть равен нулю при 45° + φ1/2 = 45°+ φ2/2 т. е. когда φ1 = φ2.


Рис. 36


Следовательно, при К = = 90° или К = 270° широта точек не изменяется и локсодромия совпадает с параллелью или при φ2 = φ1 = = 0 - с экватором.

Для всех истинных курсов, отличных от 0 - 180° и 90 - 270°, локсодромия по спирали приближается к одному из полюсов, но никогда его не достигает (рис. 36).

Длина отрезка локсодромии, пройденного судном на данном курсе, не является кратчайшим расстоянием на земной поверхности. Кратчайшим расстоянием на земной поверхности при переходе судна из одной точки до другой будет дуга большого круга, называемая ортодромией (что в переводе с греческого означает «прямой бег»).

Ортодромия с каждым меридианом составляет переменные углы. Поэтому плавание по ортодромии требует предварительного вычисления как ее положения, так и курсов, которыми ведут судно по дуге большого круга (см. § 46).

Требования, предъявляемые к морским навигационным картам

При выборе проекции для построения той или иной карты всегда исходят из требований обеспечения решения задач, для которых она предназначается.

Картографическая проекция морских навигационных карт должна быть наиболее удобной для их использования в море, т. е. для решения основных задач по обеспечению безопасности судовождения наиболее простыми способами и приемами.

Исходя из этого, картографическая проекция морских навигационных карт должна удовлетворять следующим требованиям. Чтобы: линия пути судна, идущего постоянным курсом, т. е. локсодромия, изображалась прямой линией;

Величина углов, измеряемых с судна между разными ориентирами на местности, соответствовала величинам углов между теми же ориентирами на карте, т. е. проекция карты должна быть равноугольной; масштаб в пределах карты изменялся в возможно малых пределах т. е. искажения длин на карте не превышали ошибок графических построений и измерений на карте, выполняемых с помощью прокладочного инструмента.

Удовлетворяющие этим требованиям карты построены по проекции, предложенной в 1569 г. голландским картографэм Герардом Кремером, известным под именем Меркатора, поэтому эта проекция называется меркаторской. Меркаторская проекция является равноугольной цилиндрической проекцией, на ней земные меридианы и параллели изображаются прямыми, взаимно перпендикулярными линиями, а локсодромия - прямой, составляющей с меридианами один и тот же угол.

Математическое обоснование принципа меркаторской проекции

Представим, что изображение Земли выполнено в виде глобуса (рис. 37), меридианы на нем сделаны из стальных упругих проволок, закрепленных у полюсов, а параллели - из растягивающегося материала, скрепленные с меридианами.


Рис. 37


Меридианы и параллели окрасим краской и освободим крепления проволочных меридианов у полюсов. Тогда меридианы выпрямятся, а параллели растянутся и на внутренней поверхности цилиндра как бы отпечатаются. Теперь разрежем цилиндр по образующей (по одному из меридианов); на нем будет нанесена прямоугольная сетка (следы параллелей и меридианов), в которой длина меридианов осталась неизменной, а каждая параллель растянулась до длины экватора. При этом параллель, близкая к экватору, растянется меньше, а с увеличением широты растяжение параллелей увеличивается все значительнее. Остров К круглой формы, который был на глобусе, на развернутой плоскости цилиндра спроектируется в виде овала. Для сохранения подобия изображения на глобусе и проекции его на плоскости необходимо соответственно вытянуть по длине и меридианы.

Для доказательства этого положения рассмотрим рис. 38, где обозначим радиус параллели пп через r, широту этой параллели cp, радиус глобуса R.


Рис. 38


Из треугольника пОе, в котором сторона Ое = r, получим r = R - cos φ, a R = r * 1/cos φ или R = r - sec φ. Умножив обе части равенства на 2я, получим 2ПR = 2Пtr*sec φ.

Следовательно, каждая параллель на карте цилиндрической проекции растягивается на величину, пропорциональную секансу своей широты. Поэтому для сохранения подобия фигур на карте фигурам на местности отрезки меридианов необходимо растянуть пропорционально sec φ, чем будет достигнута равноугольность проекции.

Меридиональные части

Расстояния по меридиану от экватора до данных параллелей на меркаторской карте, выраженные в линейных единицах, называются меридиональными частями. Они обозначаются буквой D.

Для удобства меридиональные части выражают длиной дуги экватора в I, называемой экваториальной милей.

В табл. 26 (МТ-63) длина меридиональных частей рассчитана применительно к эллипсоиду Красовского.

Значения в таблице вычислены для широт от 0 до 89° 59" через 1" широты с точностью до 0,1 экваториальной мили. Для определения величины меридиональных частей на промежуточных значениях минуты широты (для десятых долей 1") применяют простое интерполирование.

Пример. Найти меридиональную часть для параллели 50° 18",5.

Решение. По табл. 26 (МТ-6.3) находим:


Расстояние по меридиану на меркаторской проекции между двумя параллелями, выраженное в экваториальных милях, называется разностью меридиональных частей (РМЧ) и обозначается AD.

Разность меридиональных частей двух параллелей равна алгебраической разности меридиональных частей этих параллелей


Пример. Определить разность меридиональных частей параллелей cp1 = 63°40" N и cp2 = 66°20" N.

Решение. По табл. 26 (МТ-63) находим:


Пример. Определить разность меридиональных частей параллелей cp1 = 5°12" N и cp2 = 3°28, 5.

Решение. По табл. 2 6 (МТ-63) имеем:


Меридиональные части используют при построении картографической сетки морских карт в меркаторской проекции, а разность меридиональных частей входит в одну из основных формул письменного счисления (см. гл. VII) .

Разность меридиональных частей двух параллелей, отстоящих друг от друга на 1", даст нам длину отрезка, изображающего на карте меркаторской проекции одну экваториальную минуту в данной широте. Эта разность меридиональных частей представляет не что иное, как изображение одной морской мили на карте меркаторской проекции. Меркаторской милей пользуются как единицей линейного масштаба для измерения широт и расстояний на карте меркаторской проекции.

Поскольку морская миля, как это было указано ранее, имеет постоянную величину на поверхности Земли, то она на морской карте меркаторской проекции изображается отрезками различной длины, в зависимости от широты места, к которому она относится.

Решение. 1) Выбираем меридиональные части для широт 39°30" и 40°30" по табл. 26 (МТ-63) :


Отсюда меркаторская миля в широте 40° равна 78,0/60 = 1,3 экв. мили.

2) выбираем меридиональные части для широт 69°30" и 70°30":


Следовательно, в cp = 70° меркаторекая миля равна 175,4/60 = 2,923 экв. мили. Из этого примера видно, что отношение длины меркаторской мили в cp = 70° к длине ее cp = 40° равно 2,923/1,3 = 2,248, т. е. меркаторская миля в ср = 70° изображается отрезком, в 2,248 раза большим, чем в cp = 40°.

Поэтому при измерении по морской навигационной карте расстояний между какими-либо точками необходимо расстояния в одну милю или в несколько миль брать всегда с боковой рамки карты в той же самой широте, в какой расположены точки. Практически для измерения расстояний на карте меркаторской проекции пользуются длиной меркаторской мили, соответствующей средней широте измеряемой линии.

Главный и частный масштабы карт меркаторской проекции

Главным масштабом на меркаторской карте называется масштаб, отнесенный к экватору (если проекция построена на поверхности касательного к нему цилиндра) или к параллели сечения, называемой главной параллелью (если проекция построена на поверхности секущего цилиндра).

Частный масштаб в меркаторской проекции постоянен по всем направлениям не только в данной точке, но и во всех точках, принадлежащих одной и той же параллели.

За пределами экватора или главной параллели, численное значение частного масштаба будет отличаться от главного масштаба, изменяясь все более по мере удаления к северу или югу от экватора или главной параллели.

Если проекция построена на поверхности касательного цилиндра, то на экваторе увеличение масштаба с = 1, а поскольку каждая параллель равна экватору (растянута в sec φ раз), то на каждой параллели с = sec φ.

Например, в широте 30° увеличение масштаба будет в 1,5 раза, в широте 60° - в 2 раза, а в широте 80° - в 5,75 раза.

При построении проекции на поверхности секущего цилиндра на главной (секущей) параллели увеличение масштаба с = 1.

В такой проекции все параллели становятся равными главной, и при этом все параллели, находящиеся ближе к полюсу, чем главная, растягиваются во столько раз, во сколько секанс широты данной параллели sec φ больше секанса широты главной параллели sес cpг.п. Следовательно, на этих параллелях увеличение масштаба с>1 . Параллели, расположенные к экватору, сокращаются во столько раз, во сколько sec φ ГП. больше sec φ, и, следовательно, с
Так как увеличение масштаба - отношение частного масштаба к главному c = μ/μ0 то частный масштаб μ = cμ0. Если х заменить отношением 1/C (С - знаменатель частного масштаба), а главный масштаб μ0 выразить через 1/C0 где С0 - знаменатель главного масштаба, то знаменатель частного масштаба


штаба для точек каждой параллели при построении проекции на поверхность касательного цилиндра определится из выражения С =
а при построении на поверхность секущего цилиндра С=


Морские карты, как правило, охватывают незначительные участки земной поверхности, поэтому в пределах карты величины главного и частных масштабов мало отличаются друг от друга. По главному масштабу, указанному в заголовке карты, судоводитель выбирает карты для решения тех или иных задач.

Предельная точность масштаба

От масштабов карт и планов зависит точность, с которой на них можно производить линейные измерения.

Линейное расстояние на местности, соответствующее 0,2 мм на карте или плане, называется предельной точностью масштаба. Величина 0,2 мм принята потому, что она приблизительно равна диаметру углубления, получаемого на карте при уколе иглой циркуля, и соответствует минимальной величине, различаемой невооруженным глазом. Величина предельной точности масштаба зависит от масштаба карты. Так, если масштаб карты 1/100000 то эта величина будет 20 м.

Следовательно, линия, проведенная на карте такого масштаба остроотточенным карандашом, будет соответствовать на местности полосе шириной 20 м и на этой карте мы не сможем различить расстояний меньше 20 м.

Вперед
Оглавление
Назад

Посмотрело: 9 375

Равноугольная цилиндрическая проекция Меркатора - основная и одна из первых картографических проекций. Одна из первых, так является второй в использовании. До ее появления пользовались равнопромежуточной проекцией или географической проекцией Марниуса Тирского, впервые предложенной в 100-м году до нашей эры (2117 лет назад). Данная проекция являлась не равновеликой ни равноугольной. Относительно точными на этой проекции, получались координаты мест наиболее ближе расположенных к экватору.

Разработана Герардом Меркатором в 1569 году для составления карт, которые публиковались в его «Атласе ». Название проекции «равноугольная » означает, что проекция сохраняет углы между направлениями, известные как постоянные курсы или румбовые углы. Все кривые на поверхности Земли в равноугольной цилиндрической проекции Меркатора изображаются прямыми линиями .

"... Картографическая проекция UTM была разработана в период с 1942 - 1943 годы в германском Вермахте. Ее разработка и появление, вероятно, осуществлялось в Abteilung für Luftbildwesen (Департаменте аэрофотосъемки) Германии... c 1947 года армия США использовала очень похожую систему, но со стандартным коэффициентом масштаба 0,9996 на центральном меридиане, в отличие от немецкого 1,0.

Немного теории (и истории) о равноугольной цилиндрической проекции Меркатора

В проекции Меркатора меридианы являются параллельными равноотстоящими линиями. Параллели представляют собой параллельные линии, расстояние между которыми вблизи экватора равно расстоянию между меридианами с увеличением при приближении к полюсам. Таким образом, масштаб искажений к полюсам становится бесконечным, по этой причине Южный и Северный полюса не изображаются на проекции Меркатора. Карты в проекции Меркатора ограничиваются областями 80° ‒ 85° северной и южной широты.

"Универсальная равноугольная поперечная проекция Меркатора (UTM) использует 2-х мерную декартову систему координат... то есть, она используется для определения местоположения на Земле, независимо от высоты места...

Все линии постоянных курсов (или румбов) на картах Меркатора представляются прямыми сегментами. Два свойства: равноугольность и прямые линии румбов, делают эту проекцию уникально подходящей для применения в морской навигации: курсы и направление измеряются с помощью розы ветров или транспортира, а соответствующие направления легко переносятся от точки к точке на карте с помощью параллельной линейки или парой навигационных транспортиров для вычерчивания линий.

Название и разъяснение определенное Меркатором на его карте мира Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendata: «Новое, дополненное и исправленное описание Земли для применения моряками » указывает на то, что она специально была задумана для использования в морском судоходстве.

Поперечная проекция Меркатора.

Хотя метод построения проекции не объясняется автором, Меркатор, вероятно, использовал графический метод, передавая некоторые линии румбов ранее нанесенные на земном шаре к прямоугольной сетке координат (сетки, образованной линиями широты и долготы), а затем отрегулировал расстояние между параллелями так, что эти линии стали прямыми, что создавало один и тот же угол с меридианом, как на глобусе.

Разработка картографической равноугольной проекции Меркатора представляло собой крупный прорыв в морской картографии XVI века. Тем не менее, ее появление намного опережало свое время, так как старые навигационные и геодезические методы не были совместимы с ее использованием в навигации.

Две основные проблемы мешали ее немедленному применению: невозможность определения долготы на море с достаточной точностью, и тот факт, что в морской навигации использовались магнитные, а не географические направления. Только спустя почти 150 лет, в середине XVIII века, после того, как был изобретен морской хронометр, и стало известно пространственное распределение магнитного склонения, картографическая равноугольная проекция Меркатора была полностью принята в морской навигации.

Картографическая равноугольная проекция Гаусса-Крюгера является синонимом к поперечной проекции Меркатора, но в проекции Гаусса-Крюгера цилиндр разворачивается не вокруг экватора (как в проекции Меркатора), а вокруг одного из меридианов. Результатом является равноугольная проекция, которая не сохраняет правильные направления.

Центральный меридиан находится в том регионе, который может быть выбран. По центральному меридиану искажения всех свойств объектов региона минимальные. Эта проекция наиболее подходит для картографирования территорий, протяженных с севера на юг. Система координат Гаусса-Крюгера основывается на проекции Гаусса-Крюгера.

Картографическая проекция Гаусса-Крюгера полностью аналогична универсальной поперечной проекции Меркатора, ширина зон в проекции Меркатора составляет 6°, тогда как в проекции Гаусса-Крюгера ширина зон составляет 3°. Проекцией Меркатора удобно пользоваться морякам, проекцией Гаусса-Крюгера сухопутным войскам в ограниченных территориях Европы и Южной Америки. Кроме того, проекция Меркатора 2-х мерная точность определения широты и долготы по карте не зависит от высоты места, тогда как проекция Гаусса-Крюгера - 3-х мерная, и точность определения широты и долготы находится в постоянной зависимости от высоты места.

До окончания Второй мировой войны данная картографическая проблема стояла особенно остро, так как она усложняла вопросы взаимодействия между флотом и сухопутными войсками при ведении совместных действий.

Экваториальная проекция Меркатора.

Можно ли объединить две эти системы в одну? Можно, что и было произведено в Германии в период с 1943 по 1944 годы.

Универсальная равноугольная поперечная проекция Меркатора (UTM) использует 2-х мерную декартову систему координат, чтобы предоставлять определение места на поверхности Земли. Подобно традиционным методом широты и долготы, она представляет горизонтальное положение, то есть, она используется для определения местоположения на Земле, независимо от высоты места.

История появления и развития картографической проекции UTM

Однако, она отличается от этого метода в нескольких отношениях. Система UTM не просто проекция карты. Система UTM делит Землю на шестьдесят зон, каждая из которых имеет шесть градусов долготы, и использует пересекающуюся поперечную проекцию Меркатора в каждой зоне.

Большинство американских вышедших публикаций не указывают на первоисточник системы UTM. Вебсайт NOAA, утверждает, что система была разработана Инженерным корпусом армии США, и опубликованный материал, который не утверждает происхождение, по-видимому, основывается на этой оценке.

"Искажение масштаба возрастает в каждой зоне UTM когда границы между зонами UTM приближаются. Тем не менее, часто бывает удобно или необходимо, измерить ряд местоположений в одной координатной сетке, когда некоторые из них расположены в двух соседних зонах...

Тем не менее, серия аэрофотоснимков найденных в Bundesarchiv-Militärarchiv (военной части Федерального архива Германии) по всей видимости, начиная с 1943 - 1944 годах имеют надпись UTMREF логически вытекаемые координатные буквы и цифры, а также отображаемую в соответствии с поперечной проекцией Меркатора. Эта находка великолепно указывает на то, что картографическая проекция UTM была разработана в период с 1942 - 1943 годы в германском Вермахте. Ее разработка и появление, вероятно, осуществлялось в Abteilung für Luftbildwesen (Департаменте аэрофотосъемки) Германии. В дальнейшем с 1947 года армия США использовала очень похожую систему, но со стандартным коэффициентом масштаба 0,9996 на центральном меридиане, в отличие от немецкого 1,0.

Для областей в пределах Соединенных Штатов использовался эллипсоид Clarke 1866 года. Для остальных районов Земли, в том числе для Гавайев использовался Международный эллипсоид. Эллипсоид WGS84 теперь обычно используется для моделирования Земли в системе координат UTM, означающее, что текущая ордината UTM в данной точке может отличаться до 200 метров от старой системы. Для разных географических регионов, например: ED50, NAD83 могут быть использованы и другие системы координат.

До разработки универсальной поперечной системы координат проекции Меркатора, некоторые европейские страны продемонстрировали полезность координатной сетки на основе конформных отображений (сохраняющих локальные углы) картографии для их территорий в межвоенный период.

Расчет расстояний между двумя точками на этих картах мог быть выполнен легко в полевых условиях (используя теорему Пифагора), в сравнении с возможным использованием тригонометрических формул, требуемых в соответствии с координатной сетки на основе системы широты и долготы. В послевоенные годы, эти концепции были расширены в Универсальной поперечной проекции Меркатора/Универсальная полярной стереографической системе координат (UTM/UPS), которая является глобальной (или универсальной) системой координат.

Поперечная проекция Меркатора представляет собой вариант проекции Меркатора, которая первоначально была разработана фламандским географом и картографом Герардом Меркатором в 1570 году. Эта проекция является конформной, означающей, что сохраняются углы и, следовательно, позволяет формировать небольшие регионы. Тем не менее, она искажает расстояние и площадь.

Система UTM делит Землю между 80° южной широты и 84° северной широты на 60 зон, каждая зона равна 6 ° долготы в ширину. Зона 1 охватывает долготы от 180° до 174° W (западной долготы); зона нумерации увеличивается в восточном направлении к зоне 60, которая охватывает долготы от 174° до 180° E (восточной долготы).

Каждый из 60 зон использует поперечную проекцию Меркатора, которая может сопоставить область большей степени север-юг с низким уровнем искажений. Используя узкие зоны 6° долготы (до 800 км) в ширину, и уменьшая масштабный коэффициент вдоль центрального меридиана 0,9996 (сокращение 1: 2500), величина искажения удерживается ниже 1-й части 1000 в внутри каждой зоны. Искажение масштаба возрастает до 1,0010 на границах зоны вдоль экватора.

В каждой зоне масштабный фактор центрального меридиана уменьшает диаметр поперечного цилиндра для получения пересекающейся проекции с двумя стандартными линиями или линиями истинного масштаба, около 180 км на каждой стороне, и примерно параллельны центральному меридиану (Arc cos 0,9996 = 1,62° на экваторе). Шкала меньше 1 внутри стандартных линий и больше 1 за их пределами, но общее искажение сведено к минимуму.

Искажение масштаба возрастает в каждой зоне UTM когда границы между зонами UTM приближаются. Тем не менее, часто бывает удобно или необходимо, измерить ряд местоположений в одной координатной сетке, когда некоторые из них расположены в двух соседних зонах.

Вокруг границ крупномасштабных карт (1: 100 000 или более) координаты для обоих примыкающих зонах UTM обычно печатаются в пределах минимального расстояния 40 км по обе стороны от границы зоны. В идеале, координаты каждой позиции должны быть измерены на координатной сетке для зоны, в которой они расположены, а масштабный коэффициент все еще относительно небольших границ ближней зоны можно перекрывать измерениями в соседнюю зону на некоторое расстояние, когда это необходимо.

Полосы Широт не являются частью системы UTM, а скорее частью опорной военной системы координат (MGRS). Они, однако, иногда используются.

Эллипсоидная проекция Меркатора.

Каждая зона сегментирована на 20 широтных полос. Каждая широтная полоса в высоту 8 градусов, и начинается литерными буквами с «C » при 80°S (южной широты), увеличиваясь по английскому алфавиту до буквы «X », пропуская буквы «I » и «O » (из-за их сходства с цифрами единицы и ноль). Последняя широта диапазона, «X », продлевается дополнительно на 4 градуса, так что она заканчивается на 84° северной широты, охватывая, таким образом, самую северную часть на Земле.

Заключение о картографической проекции (UTM/UPS) Меркатора

Широта полосы «A » и «B » действительно существуют, как и полосы «Y » и «Z ». Они охватывают западную и восточную стороны антарктических и арктических регионов соответственно. Удобно мнемонически помнить, что любая буква, стоящая перед «N » в алфавитном порядке - зона находится в южном полушарии, а любая буква после буквы «N » - когда зона находится в северное полушарие.

Сочетание зоны и широтной полосы - определяет зону координатной сетки. Зона всегда записывается первой, а затем широтная полоса. Например, положение в Торонто, Канаде, окажется в зоне 17-й и широтной зоне «Т », таким образом, полная ссылка зона координатной сетки «17Т ». Зоны координатной сетки служат для определения границ нерегулярных UTM зон. Они также являются неотъемлемой частью эталонной сетки военной системы координат. Метод также используется, чтобы просто добавлять N или S после номера зоны, чтобы указать северное или южное полушарие (к плановым ординатам координат вместе с номером зоны все необходимое для определения позиции, за исключения, на каком полушарии).

При решении задач навигации возникает необходимость отображения на морской карте линии курса корабля (локсодромии), измерения и прокладки углом и направлений. Исходя из указанных задач, к картографической проекции морской карты предъявляются следующие требования:

Локсодромия на карте должна изображаться прямой линией;
- углы, измеренные на местности, должны быть равны соответствующим углам, проложенным на карте, т. е. проекция должна быть равноугольной.

Указанным требованиям удовлетворяет прямая равноугольная цилиндрическая проекция, разработанная в 1569 году голландским картографом Герардом Кремером (Меркатором).

1. Земля принимается за шар и рассматривается условный глобус, масштаб которого равен главному масштабу.
2. Координатные линии (меридианы и параллели) проецируются на цилиндр.
3. Ось цилиндра совпадает с осью условного глобуса.
4. Цилиндр касается условного глобуса по линии экватора.
5. Меридианы и параллели условного глобуса проецируются на поверхность цилиндра таким образом, чтобы их проекции оставались в плоскотях меридианов и параллелей.
6. После разрезания цилиндра по образующей и разворачивания в плоскость образуется картографическая сетка - взаимноперпендикулярные прямые линии: меридианы и параллели.

7. Цилиндр касается условного глобуса по экватору, поэтому круг Ao1 на экваторе на карте изображается кругом A1.
8. При проецировании параллелей происходит их растяжение, причем чем параллель дальше отстоит от экватора (больше географическая широта) тем растяжение больше: круги Ао2 и Ао3 на карте изображаются эллипсами А2, А3, т. е. полученная проекция не равноугольная.
9. Чтобы эллипсы А2 и Аз превратились в круги А2" А3" неооходимо меридиан в каждой точке вытянуть пропорционально растяжению параллели в данной точке.
Чем больше широта, тем больше растянута параллель, а следовательно, тем больше должен быть вытянут меридиан
10. В результате одинаковые круги на глобусе, расположенные на разных параллелях, на карте изобразятся кругами разных размеров, увеличивающихся с географической широтой.

Графическое изображение на карте одной минуты дуги меридиана (морская миля) увеличивается с географической широтой.

Следовательно, при измерении и прокладке расстояний необхо-димо использовать ту часть линейного масштаба карты, в широте которого осуществляется плавание корабля.

Полученная таким образом проекция является:
- прямой - ось цилиндра совпадает с осью вращения Земли;
- равноугольной - элементарный круг на земной поверхности изображается на карте кругом (сохраняется подобие фигур);
- цилиндрической - картографическая сетка (меридианы и параллели)представляет собой взаимно перпендикулярные прямые линии.

Уравнение проекции для шара имеет вид:

X = R ln tg (45" + φ/2); y = R λ;

При получении проекции главный масштаб соответствовал главному масштабу условного глобуса, т е. при проецировании на цилиндр искажения отсутствовали на линии, по которой цилиндр касался глобуса - на экваторе.

При изготовлении карт в данной проекции это оказалось недостаточно удобным. Поэтому для каждой широтной зоны выбрали линию проекции, на которой отсутствуют искажения - главную параллель. Параллель, на которой масштаб равен главному масштабу, называется главной параллелью. Широта главной параллели данной карты указывается в заголовке карты.